Нью-йоркский профессор Джо Бирман объяснил мне, что для него как американца “правильное” решение этой за­дачи совершенно очевидно. “Дело в том — сказал он — что я точно представляю себе степень идиотизма со­ставителей этих задач”.
В.И. Арнольд, “Для чего мы изучаем математику?” Квант, 1993, 1/2, 5-15.

Весь мир куда-то глобализуется, и мы должны глобализоваться туда же, и отклонение хотя бы в деталях (и даже скорее в деталях и форме, чем в содержании) воспринимается как опасное вольнодумство; напротив, точное соблюдение подробностей крайне приветствуется нашими партнерами из Первого Мира и даже служит порой индульгенцией для несоответствия по существу.

Поэтому признание и авторитет в Первом Мире - аргумент, действующий почти безотказно. На рассудочные доводы вам возразят: "А вот в развитых странах…", и продолжать спор будет столь же неприлично, как оспаривать Священное Писание. Об одном из таких авторитетов я и собираюсь поговорить в связи с наукой тестологией, играющей все большую роль в нашей жизни.

И так, "в развитых странах" при найме на работу (и для других назначений) довольно часто используется система тестов, на основании которых испытуемым присваивается числовой показатель, именуемый IQ (что его изобретатели расшифровывают как Intelligence Quotient - коэффициент интеллекта).

При стандартных испытаниях на IQ предлагается за определенный срок (обычно 30 или 90 минут) ответить на сорок вопросов.

Примеры таких комплектов задач даны в книжке [1], написанной Г. Айзенком (Hans Eysenck) - как сказано в аннотациях, "классиком современной психологии" и "самым знаменитым исследователем IQ". Правда, сам он во введении к книге демонстрирует примерную скромность, обвиняя журналистскую братию в абсолютном невежестве (utter ignorance), состоящем в том, что они-де несправедливо провозглашают его изобретателем IQ и человеком, доказавшим наследственный характер IQ; однако же не вызывает сомнений, что именно ему эти тесты обязаны своей популярностью, устоявшейся структурой и набором типов задач.

Вероятно, в связи с тем, что в понятие интеллекта традиционно включается способность к логичному мышлению и наличие пространственного воображения, в каждом из восьми тестов, приведенных в [1], содержится по две "логические" и по две "геометрические" задачи. Их я и хочу прокомментировать.

Логика

Во всех шестнадцати логических задачах в качестве условия дается несколько утверждений о наличии общих элементов у некоторых довольно экзотически определяемых множеств или о том, что одно из этих множеств является частью другого. Затем заявляется, что еще одно утверждение такого типа является следствием приведенных условий; испытуемый должен ответить на вопрос, верно ли последнее высказывание.

Вариант 1, задача 11

Некоторые тракторы - кувшины; а у большинства кувшинов оранжевые носы; все те, у кого носы оранжевые, крякают; таким образом, некоторые из тех, кто крякает, - тракторы.

​Не следует пугаться этих странных заявлений: по сути, это стандартная задача на алгебру и логику теории множеств. Просто вместо нудных букв A, B, C и т. д. для обозначения каких-то абстрактных множеств используются другие имена - тракторы, кувшины, "те, кто крякает" и т. п. Высказывание "некоторые тракторы - кувшины" означает, что соответствующие множества пересекаются (то есть существуют объекты, входящие и в то множество, и в другое);высказывание "все корабли - пингвины" означает, что первое множество - часть второго. Высказывание "все телефоны боятся книжных шкафов", вероятно, следует понимать как отсутствие у двух множеств общих элементов (хотя "классику современной психологии" следовало бы знать, что боязнь себе подобных - явление всего лишь ненормальное, но не невозможное). Поэтому эти формулировки вовсе не страшны. Страшно другое.

Авторский ответ на данную задачу: последнее высказывание истинно.

Этот ответ неверен: на диаграмме показана ситуация, в которой все условия выполнены, а заключение - нет. (Далее на всех диаграммах множества схематически изображены именованными прямоугольниками; имя каждого прямоугольника полностью в нем помещается.)

Вариант 1, задача 25

Все корабли - пингвины, а у всех пингвинов на ногах растут газонокосилки; кроме того, некоторые пингвины едят холодильники; и все фены едят холодильники. Но никто из тех, у кого на ногах растут газонокосилки, не является феном; так что ни один корабль не ест холодильники.

Авторский ответ и объяснение: ложно. Некоторые корабли едят холодильники.

Хотя ответ верен, обоснование ошибочно. На самом деле заведомо ложным при данных условиях является не высказывание "ни один корабль не ест холодильники" (на основании условий достоверное утверждение о его истинности или ложности сделать невозможно), а утверждение (выраженное словами "так что") о том, что это высказывание следует из условий. На диаграмме показана схема пересечений множеств, противоречащая авторскому утверждению: она удовлетворяет всем данным задачи, но в ней ни один корабль не ест холодильники.

Вариант 2, задача 14

Некоторые гоблины - снежинки; некоторые снежинки хорошо играют в баскетбол; у всех, кто хорошо играет в баскетбол, по три головы; следовательно, все те, у кого по три головы, - гоблины.

Авторский ответ: истинно.

Этот ответ неверен. Более того, возможен вариант, когда никто из тех, у кого по три головы, не является гоблином (см. диаграмму).

Вариант 3, задача 11

Решена автором правильно. Поэтому я не осмеливаюсь нарушить авторское право и опубликовать условие этой задачи. С другой стороны, я надеюсь, что несанкционированная публикация неправильных задач наносит не столь большой ущерб интеллектуальной собственности, чтобы прийти в противоречие с законом. (То же относится к остальным четырем верным задачам: №№ 3 и 26 из варианта 4 и №№ 11 и 23 из варианта 8).

Вариант 5, задача 13

Все ящики - гитары; все гитары - хорошие борцы. У некоторых хороших борцов перепончатые лапы; следовательно, у некоторых ящиков перепончатые лапы.

Авторский ответ: верно.

Этот вывод неверен, как показывает диаграмма.

Вариант 5, задача 29

Все носки - лягушки, и у всех лягушек по четыре клюва; все огни умеют готовить пищу, а у всех, кто умеет готовить пищу, по четыре клюва; некоторые лягушки умеют пищать. Все носки - огни, следовательно, некоторые огни пищат.

Авторский ответ: верно.

Этот вывод ошибочен, как показывает диаграмма.

Вариант 6, задача 22

Все перья - шоферы и всегда выкидывают бананы из окна. Лягушки иногда могут бросить дротик на три мили, как и некоторые лимоны. Лимоны - ходули и всегда выкидывают бананы из окна. Следовательно, и перья, и ходули всегда выкидывают бананы из окна.

Авторский ответ: истинно.

Этот ответ неверен. Невозможно сделать вывод, что все ходули удовлетворяют какому-то условию, не имея ни одного условия, также относящегося ко всем ходулям (а не к их части, состоящей из лимонов). Точнее, такое утверждение можно сделать только в том случае, когда совокупность вводной информации внутренне противоречива; как показывает диаграмма, в данном случае это не так.

Вариант 7, задача 12

Все кукурузные хлопья - лошади. Все кукурузные хлопья носят красные пуговицы и иногда играют в бинго. Пшеничные лепешки иногда играют в бинго. Алмазы - пшеничные лепешки, следовательно, алмазы и лошади иногда играют в бинго.

Условие задачи можно понимать тремя разными способами (что само по себе является существенным недостатком), так как высказывание "алмазы и лошади иногда играют в бинго" допускает три различных интерпретации. Во всех трех случаях авторский ответ ошибочен.

Первое понимание: каждый алмаз и каждая лошадь иногда играет в бинго. В этом случае авторский ответ ошибочен по той же причине, что и в предыдущей задаче: невозможно сделать достоверное утверждение обо всех лошадях, имея информацию только о тех из них, которые одновременно являются кукурузными хлопьями (см. диаграмму).

Второе понимание: бывают моменты времени, когда какие-то алмазы и какие-то лошади играют в бинго. В этом случае ответ очевидно неверен, потому что нигде в условии ничего не сказано о том, кто с кем играет одновременно.

Наконец, третье понимание: бывают моменты, когда какие-то алмазы играют в бинго, и бывают (быть может, другие) моменты, когда какие-то лошади играют в бинго. Но тогда в таком же смысле надо понимать условие "пшеничные лепешки иногда играют в бинго": бывают моменты, когда какие-то лепешки играют в бинго. При этом не исключено, что это случается только с теми лепешками, которые не являются алмазами, следовательно, авторский ответ снова неверен.

Вариант 7, задача 40

Некоторые открытки - белые медведи, а некоторые моечные машины часто чихают; кроме того, дикобразы говорят по-китайски, а все те, кто говорит по-китайски, часто чихают. Но ни один белый медведь часто не чихает. Некоторые моечные машины говорят покитайски, а все открытки - моечные машины. Следовательно, некоторые открытки говорят по-китайски.

Авторский ответ: истинно.

Это заключение ошибочно в силу следующего примера. Допустим, что а) множества открыток и белых медведей совпадают между собой, б) множества дикобразов, чихателей и знатоков китайского языка тоже совпадают между собой, в) множество моечных машин является объединением множеств а) и б), причем два последних множества не имеют общих элементов. Тогда все условия задачи выполнены, а заключение - нет.

Столь же неверно решены задачи 2:39, 3:26 и 6:11. Итого, автор правильно решил не более пяти из шестнадцати своих собственных логических задач и еще в трех дал правильный ответ на основании неправильного рассуждения.

Согласно таблице, приведенной в [1] на стр. 207, такой процент правильных решений (5/16 = 12,5/40) дает значение IQ, равное примерно 106. Согласно разъяснению на стр. 14 в [2], это несколько ближе к уровню квалифицированных работников (109 баллов), чем слабо квалифицированных (98 баллов); впрочем, поскольку выше "квалифицированных работников" там указаны еще три ступени развития, в том числе "высококвалифицированные, канцелярские работники" (117 баллов), к должности клерка человека с таким показателем подпускать все же нельзя. С другой стороны, среди сорока задач (из которых надо набрать двенадцать с половиной) немногие требуют выбора ответа - да и те, как правило, не из двух, а из шести вариантов. В то же время в логических задачах достаточно лишь угадать один ответ из двух. Для того чтобы в среднем дать восемь правильных ответов на шестнадцать вопросов типа да/нет, можно вообще ни о чем не думать, а произвольно расставлять ответы.

Однако человек, поступивший так со всеми сорока задачами в каждом из данных тестов, в среднем наберет лишь три и одну треть балла. В силу упомянутых таблиц, этот результат соответствует и вовсе "неквалифицированным работникам" с IQ примерно 90,6. Впрочем, это все же гораздо лучше уровня "бродяг, поденных рабочих" и "пациентов психиатрических клиник", для которых характерны значения IQ, равные 82 и 57, заработать которые, согласно недвусмысленно сформулированным в этих книгах правилам интерпретации и экстраполяции данных таблиц, можно лишь дав неправильные ответы соответственно на 42 и 57 из &#

2017-07-14
Статья выложена в ознакомительных целях. Все права на текст принадлежат ресурсу и/или автору (psychologos Психологос)

Что интересного на портале?